Determining the correct quadrant of an angle

Complex number:

$$
\begin{aligned}
z= & x+j y \\
r= & \sqrt{x^{2}+y^{2}} \\
\varphi= & \operatorname{ATAN}(\mathrm{y} / \mathrm{x}) \\
& \cos (\phi)=\frac{x}{r} \\
& \sin (\phi)=\frac{y}{r}
\end{aligned}
$$

Must check the sign of $\sin (\varphi)$ and $\cos (\varphi)$ in order to determine the correct quadrant sign of the angle

Angle In the first quarter

Sine	$\sin \left(30^{\circ}\right)=1 / 2=0.5$
Cosine	$\cos \left(30^{\circ}\right)=1.732 / 2=0.866$
Tangent	$\tan \left(30^{\circ}\right)=1 / 1.732=0.577$

If both \sin and cos are positive, then $\varphi=A T A N($ angle)

Angle In the second quarter

Sine	$\sin \left(150^{\circ}\right)=1 / 2=0.5$
Cosine	$\cos \left(150^{\circ}\right)=-1.732 / 2=-0.866$
Tangent	$\tan \left(150^{\circ}\right)=1 /-1.732=-0.577$

If \sin is +ve and cos is -ve , then $\varphi=180+$ TAN (angle)

Angle In the third quarter

Sine	$\sin \left(210^{\circ}\right)=-1 / 2=-0.5$
Cosine	$\cos \left(210^{\circ}\right)=-1.732 / 2=-0.866$
Tangent	$\tan \left(210^{\circ}\right)=-1 /-1.732=0.577$

If \sin is -ve and cos is -ve , then $\varphi=-180-$ TAN(angle)

Angle In the forth quarter

Sine	$\sin \left(330^{\circ}\right)=-1 / 2=-0.5$
Cosine	$\cos \left(330^{\circ}\right)=1.732 / 2=0.866$
Tangent	$\tan \left(330^{\circ}\right)=-1 / 1.732=-0.577$

If \sin is -ve and cos is +ve , then $\varphi=\operatorname{TAN}($ angle)

- All three of them are positive in Quadrant I
- Sine only is positive in Quadrant II
- Tangent only is positive in Quadrant III
- Cosine only is positive in Quadrant IV

Signs of angles in different quadrants

Applications to first and second order systems exposed to periodic excitation input (i.e. Frequency Response)

Frequency response for the first order system

Transfer function for first order system

$$
G(s)=\frac{1}{1+\tau s}
$$

For frequency response let $\mathrm{s}=\mathrm{j} \omega$

$$
G(j \omega)=\frac{1}{1+\tau \omega j}
$$

Multiply by the conjugate of the complex number

$$
G(j \omega)=\frac{1}{1+\tau \omega j} \frac{1-\tau \omega j}{1-\tau \omega j}=\frac{1}{1+(\tau \omega)^{2}}(1-\tau \omega j)
$$

$$
\begin{aligned}
& x=1 \quad y=-\tau \omega \tan (\phi \\
& \sin (\phi)=\frac{y}{r}=\frac{-\tau \omega}{\sqrt{1+(\tau \omega)^{2}}} \\
& \cos (\phi)=\frac{x}{r}=\frac{1}{\sqrt{1+(\tau \omega)^{2}}}
\end{aligned}
$$

Frequency response for the second order system

Differential equation

$$
m \frac{d^{2} y}{d t^{2}}+c \frac{d y}{d t}+k y=F(t)
$$

Laplace transfer

$$
\begin{gathered}
\left(\frac{m}{k} s^{2}+\frac{c}{k} s+1\right) Y(s)=F(s) \\
Y(s)=\frac{F(s) / k}{\frac{m}{k} s^{2}+\frac{c}{k} s+1}
\end{gathered}
$$

$\begin{aligned} & \text { Definition of natural frequency } \\ & \text { and damping ratio }\end{aligned} \omega_{n}=\sqrt{\frac{k}{m}} \quad \zeta=\frac{c}{2 \sqrt{k m}}$

Transfer function ratio

$$
G(s)=\frac{1}{\left[\left(\frac{\omega}{\omega_{n}}\right)^{2} s^{2}+\left(\frac{2 \zeta \omega}{\omega_{n}}\right) s+1\right]}
$$

Transfer function for periodic input. Change sto j ω

$$
G(j \omega)=\frac{1}{\left[\left(\frac{\omega}{\omega_{n}}\right)^{2}(j)^{2}+\left(\frac{2 \zeta \omega}{\omega_{n}}\right) j+1\right]}
$$

Frequency response for the second order system

Since $j^{2}=-1$

Multiply by the conjugate of the complex number

From this equation one can get the amplitude ratio and phase shift

$$
G(j \omega)=\frac{1}{\left[1-\left(\frac{\omega}{\omega_{n}}\right)^{2}+\left(\frac{2 \zeta \omega}{\omega_{n}}\right) j\right]}
$$

$$
G(j \omega)=\frac{1}{\left[\left[1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right]+\left(\frac{2 \zeta \omega}{\omega_{n}}\right) j\right]} * \frac{\left[1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right]-\left(\frac{2 \zeta \omega}{\omega_{n}}\right) j}{\left[1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right]-\left(\frac{2 \zeta \omega}{\omega_{n}}\right) j}
$$

$$
G(j \omega)=\frac{\left[1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right]-\left(\frac{2 \zeta \omega}{\omega_{n}}\right) j}{\sqrt{\left[1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right]^{2}+\left(\frac{2 \zeta \omega}{\omega_{n}}\right)^{2}}}
$$

$$
x=1-\left(\frac{\omega}{\omega_{n}}\right)^{2}
$$

$$
y=-\frac{2 \zeta \omega}{\omega_{n}}
$$

$$
r=\sqrt{x^{2}+y^{2}}
$$

$$
\sin (\phi)=\frac{y}{r}
$$

$$
\cos (\phi)=\frac{x}{r} \quad \tan (\phi)=\frac{y}{x}
$$

Frequency response for the second order system

$$
G(j \omega)=\frac{\left[1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right]-\left(\frac{2 \zeta \omega}{\omega_{n}}\right) j}{\sqrt{\left[1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right]^{2}+\left(\frac{2 \zeta \omega}{\omega_{n}}\right)^{2}}}
$$

Amplitude ratio

$$
|G(j \omega)|=\frac{1}{\sqrt{\left[1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right]^{2}+\left(\frac{2 \zeta \omega}{\omega_{n}}\right)^{2}}}
$$

Phase shift

$$
\phi=A T A N\left[\frac{-\frac{2 \zeta \omega}{\omega_{n}}}{1-\left(\frac{\omega}{\omega_{n}}\right)^{2}}\right]
$$

$$
\begin{array}{rrr}
x=1-\left(\frac{\omega}{\omega_{n}}\right)^{2} & y=-\frac{2 \zeta \omega}{\omega_{n}} & r=\sqrt{x^{2}+y^{2}} \\
\sin (\phi)=\frac{y}{r} & \cos (\phi)=\frac{x}{r} & \tan (\phi)=\frac{y}{x}
\end{array}
$$

